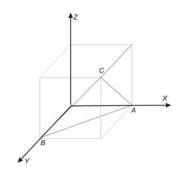
В некоторой точке тела заданы значения проекций напряжений:

$$P_{xx} = 500 \frac{\text{KT}}{\text{M}^2}$$
; $P_{yy} = 0$; $P_{zz} = -300 \frac{\text{KT}}{\text{M}^2}$;


$$P_{xy} = -500 \frac{\text{kg}}{\text{m}^2}$$
; $P_{yz} = -750 \frac{\text{kg}}{\text{m}^2}$; $P_{xz} = 800 \frac{\text{kg}}{\text{m}^2}$

Найдите компоненты напряжений для осей 0x; 0y и 0z, считая, что ось 0z совпадает с отрицательным направлением оси 0z, а оси 0x и 0y получаются путём поворачивания осей 0x и 0y на угол 30 градусов вокруг оси 0z.

Для плоской деформации, в которой $U_z=0$, а U_x и U_y от z не зависят, выразите P_{zz} через P_{xx} и P_{yy}

Определите полное, нормальное и скалывающее (тангенциальное) напряжения для плоскости ABC, проходящей через три вершины куба, считая, что к граням куба приложены напряжения

$$P_{xx}=500~\frac{\mathrm{K}\Gamma}{\mathrm{M}^2};~P_{yy}=-500;~P_{zz}=750~\frac{\mathrm{K}\Gamma}{\mathrm{M}^2},$$
 являющиеся главными напряжениями в данной точке.

